stimmts oder stimmts nicht?

der graph einer polynomfunktion dritten grads hat stets zwei extrempunkte ?

4 Antworten

Bewertung
  • vor 1 Jahrzehnt
    Beste Antwort

    Nein, stimmt nicht.

    Und auch Toms Behauptung stimmt nicht.

    y = f(x) = ax² + bx + c mit a ≠ 0

    Die Ableitung einer ganz rationalen Funktion dritten Grades ist eine ganz rationale Funktion zweiten Grades, also eine quadratische Funktion.

    Für deren Nullstellen gibt es drei Möglichkeiten:

    2 Nullstellen

    1 Nullstelle

    keine Nullstelle

    Die zweite Ableitung ist eine lineare Funktion

    f ''(x) = 6ax + 2b mit a ≠ 0

    Sie hat genau eine Nullstelle

    Daraus folgt für die Funktion dritten Grades:

    Sie hat immer einen Wendepunkt, aber:

    Wenn die 1. Ableitung zweimal verschwindet, hat sie zwei Extrempunkte: Minimum und Maximum,

    Wenn die 1. Ableitung einmal verschwindet, hat sie einen Sattelpunkt,

    wenn die 1. Ableitung niemals 0 wird, hat sie auch keinen Sattelpunkt.

    Beispiel für letzteren Fall:

    y = f(x) = x³ + 6x

    y ' = f '(x) = 3x² + 6 = 3(x² + 2) => keine Nullstellen, keine lokalen Extrema

    y '' = f ''(x) = 6x

    Die Funktion hat ihren Wendepunkt in O(0|0), aber dort ist der Anstieg f '(0) = 6 ungleich 0

    Also hat diese Funktion weder Extrema noch Sattelpunkt.

    @Hi, Tom!

    Gern geschehen!

    Grüßele

    (Du hast mich ja auch schon so manches Mal mit der Nase darauf gestukt, dass ich i-wo den Wald vor lauter Bäumen nicht gesehen habe)

  • Tom
    Lv 7
    vor 1 Jahrzehnt

    Stimmt nicht!

    ===========

    Sieh Dir einfach die Funktion f(x) = x³ an!

    Aber man kann sagen, dass eine Funktion dritten

    Grades genau zwei Extrempunkte, also genau ein

    Minimum und genau ein Maximum und einen

    Wendepunkt, oder keine Extrempunkte, dafür aber

    einen Sattelpunkt besitzt.

    In letzterem Fall verschmelzen Hoch-, Tief- und

    Wendepunkt zu einem Sattelpunkt.

    @Wurzelgnom: Du hast recht. Man lernt nie aus.

  • Anonym
    vor 1 Jahrzehnt

    ja und ein stilles Kämmerlein

  • C.
    Lv 4
    vor 1 Jahrzehnt

    Ja. Soviel ich weiss haben Polynomfunktionen stets (n-1) Extrempunkte, wenn sie vom n.ten Grad sind.

Haben Sie noch Fragen? Jetzt beantworten lassen.